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P R I N C I P L E  OF C O R R E S P O N D E N C E  OF STATIC B O U N D A R Y - V A L U E  

PROBLEMS OF N O N L I N E A R  VISCOELASTICITY W I T H  A G I N G  

TO B O U N D A R Y - V A L U E  P R O B L E M S  OF THE T H E O R Y  OF E L A S T I C I T Y  

G. Yu .  E r m o l e n k o  UDC 539.376.001 

The principle of correspondence of boundary-value problems of the nonlinear nonuniform 
anisotropic theory of viscoelasticity to boundary-value problems of the theory of elasticity is 
formulated. The correspondence is established by means of integral transforms with previously 
unknown kernels. A class of viscoelastic materials for which these transforms can be reduced to 
boundary-value problems of fictitious elasticity is determined. 

We consider a nonlinear static boundary-value problem of nonuniform anisotropic viscoelasticity with 

aging [1]: Oaii 
Ox'-"~ + Xi = O, eli = "~ ( Oxj + Oxi J ' 

t $ 

Here e•(z,t) and aij(x,t)  are the components of the strain and stress tensors, R(O)(x,t,~l,..., rn) are the 
relaxation kernels, (i j )  = Qjl i2j2 . . .  i,,jn, ui(z, t) are the components of the displacement vector, Pi(x, t) are 
the components of the stress vector on a part of the surface of the body So with the unit normal n (ni are its 
components), and u~(x, t) are the components of the displacement vector on a part of the surface S,. 

We introduce linear integral transforms with the kernel ~i(P, t): 

f ( t)  = f f*(P)~I(P, t) dp. (2) 
lip 

Here the functions f( t )  and f*(p) are the integral image and the inverse integral image, respectively. We 
assume that the following inverse integral transforms are known for the integral transforms (2) 

f*(p) = f t) dr, (3) 
fit 

where ~+(p, t) are the resolvent kernels. 
Thus, for each inverse image f*(p), Eqs. (2) and (3) make it possible to choose as many possible integral 

images f(t)  as desired by choosing a specific form of the kernel ~al(p, t). The same two equations also allow us 
to find as many integral inverse transforms as desired for each image f( t) .  Here the subscript I in the notation 
used for the kernels of the direct and inverse integral transforms make it possible to distinguish one integral 
transform from another. Using Eqs. (2) and (3), we can obtain 
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f(t) = f i r  f(t')qa+(p,t')dtt]qa1(p,t)dp. (4) 
tip 12 t, 

By changing the order of integration in (4), we have 

n t, flp 

In the last formula, /~o+(p,~')qoi(p,t)dp = G(t',t) is, by virtue of (5), the kernel of the following 
flp 

unitary integral transform 
f(t) = f G(t', t)f(t') dr'. 

tilt 
We further assume that all of the integral transforms are one-to-one and continuous and that it is 

possible to change the order of integration and to calculate multiple integrals in an arbitrary order. 
The foregoing permits us to prove the following theorem. 
Theo rem  1. Boundary-value problem (1) in inverse inte#ral images (2) has the form 

oo n 

n = l  np I (=1 

~b(x ,p )n i (x )  = P; (~ ,p) ,  �9 e so,  ~ ( ~ , p )  = ~ ( x , p ) ,  �9 e s~. 

Proof. Let the components of the displacement vector ui(z, t) be the integral images of the inverse 
images u~(x,p): 

/ ~ ( ~ ,  p)~,(p, t) ap. (6) Ui(2,  t) 
n~ 

Then the Cauchy relations make it possible to obtain 

, ij(z,t)= ~ {~-~zj n ,I 0 fu~(x,p)~l(p,t)dp+~fu~(x,p)~l(p,t)dp}.__.e, (7) 

In (7), differentiation and integration are performed with different parameters. Thus, by changing the 
order in which these operations are performed, we have 

f 1 [0u~(z,p) + Ou~(z,p)]~t(p,t)dp" ~ij(z, t) (s) 
J 

Let ~ij(x, t) in relations (1) be the integral image of the quantity ~'j(z,p): 

eli(Z, t) = f eb(z,p)~i(p, t) dr,. (9) 
Op 

Then we can use (8) and (9) to obtain 

. X{cguZ(z,p ) Ou~(:c,p)} (I0) 
%(z,p)= { Ozj + O~i " 

Also taking the relaxation kernels R(ij)(z,t, rl,...,~'n) to be the integral images of the quantities 
I~(ij)(Z , t, T 1 , . . .  , 7 "n_ l ,  Pl), we have 

R(ij)(z,t,n,...,r,~)= f R~ij)(z,t,r,,...,r,_,,p,)~,t(p,,'c,,)dp,. (II) 
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In turn, the function Riij)(x , t, r l , . . . ,  7"n-1, Pl) in Eq. (11) can be considered the integral image of the 
function R** t x ~ , . . .  (ij)k '%T1 ,~'n-2,P2,Pl): 

R~ij) (2~,t,Tl,... ,Tn_l,pl) = f R~i~) (x,~,TI,... ,Tn_2,p2,pl)~t(p2,1"n_l)dp2. 
(}P2 

Thus, with allowance for the above, we represent the function R ( i j ) ( x  , t ,  I r l , . . .  , Tn) in the form 
n 

" ' ' '  R(ij)( 'P 'PI"' ' 'Pn)V)II(P '~:) I I  Vt(Pm'Tm) dp mdp" (12) 
Np n+l flpn m=l 

Formula (12) makes it possible to transform the constitutive relation of problem (1) in the following 
manner: 

O 0  t /{/ /,., . ~d~, t )  = .:.v.. ~ R(~j)(~,p,p~,...,p,)~t,(p,t) II  (p+(v,,,,~-,,,)dp,,,@ ~d~(~-~)d~-~. 
: 0 n 0 f~p n+l f~Pn m:l  

Considering (12) and the fact that the integral transforms with the kernels cpt(p , t) and ~+(p, t) are 
one-to-one transforms, we obtain 

, . , .  . 

= a(ii)(,P,P,,...,Pn) fi eir162 (13) 
" =  f/Pl ~=1 

Let trij(z, t) also be the integral image of the inverse image crtj(z,p): 

~,i( , , t)  = / ~*jC~,p)~z(p,t) @. (14) 
rb 

It then follows from (13) and (14) that 

= R0i)(z,p,p~,... ,p~) I~i eqi((z,p~) dp~. 
- ( = I  

Assuming that Xj(x,t) ,  Pi(x, t ) ,  and u~ are also the integral images of the quantities X~(z ,p) ,  P*(z,p),  
and u[O(z,p): 

f~v Op 

u~ t) = / u*~ 

+ x~'(~,p) = o, ~t i ( : ,p)-J(:)  = P~'(:,p), x E s., u'( : ,p)  = . ;o(: ,p),  ~ E s.. azy 
Thus, the boundary-value problem of viscoelasticity (1) becomes a boundary-value problem for images: 

aer*j(x,p) , 1 { au*(x,p) 0u~(x,p) ~ 
a:j + x*(:,p)= o, qi(x,p)= ~ axj + ~ J' 

n 

* R(ij)(x,p, Pl,. ,Pn) I I  * d 
n----1 (~Pl ~ = 1  

~;(x,p).j(:)=P;(x,.), xss., u~(:,p)=u~~ :Es.. 

(15) 

we o b t a i n  

O%(~,p) 
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Obviously, the boundary-value problem (15) does not have a time parameter, i.e., it is elastic for the 
images. Thus, by using integral transforms, we have reduced the given class of problems of the nonlinear 
nonuniform anisotropic theory of viscoelasticity to the corresponding class of problems of the theory of 
elasticity. 

The choice of the pair r t) and ~+(p, t) of direct and inverse integral transforms in each particular 
case is determined by the conditions that must be satisfied by the sought solutions of the initial viscoelastic 
problem aij(z,t),  ui(x, t), and eii(x,t) and by the class of viscoelastic materials being described, i.e., the 
relaxation kernels R(ij)(x, t, r l , . . . ,  rn). For example, if a viscoelastic body occupies a finite volume, ao(x , t), 
ui(z, t), ei/(x, t) and R(iD(x, t, 7"1,..., ~'n) are assumed to be continuous with respect to all of their arguments 
and the problem is examined on a finite time interval, then Fourier transforms can be used as the direct 
and inverse integral transforms. When the behavior of an viscoelastic material is examined on a semi-infinite 
straight line [t E [0, +r162 it becomes necessary to use direct and inverse Laplace transforms. 

In making a transition from the viscoelastic boundary-value problem (1) to the corresponding elastic 
problem (15), the constitutive equation (15) can be simplified considerably in some situations. For example, 
this might occur in the case where R (*) tx " . . ,  (ij)x ,~,,pl,. pn) satisfies the relation 

n 

R (*) "z R (*)/z (~j)t , p , p , , . . . , p . )  = (~j)~ ,p) I I  G(p,p,,). (:6) 
~'=1 

(.) 
Here R(ij)(z, p) are the components of certain tensors and functions of the parameters z and p, and G(p, p,,) 
are the kernels of the unitary integral transformations. In this case, integral transforms with the kernels ~ot(p, t) 
and ~ ' (p ,  t) will be referred to as optimum transforms. Here the following theorem proves to be valid. 

Theorem 2. Optimum transforms reduce the viscoelastic boundary-value problem (1) to a boundary- 
value problem of nonlinear elasticity for the inverse images 

(go'b(x,p) 1 { Ou*(x,p) 

O 0  11 

~*i(~,p) = ~ ,~(*),~ -, �9 
�9 o(ij)~ , ~J 1-1%j~(x ,  p), 

n = l  ~=1 

~,3(~,p)nj(~) = P;(~,p), �9 ~ s . ,  u*(x,p) = u~0(~,p), 

o - , ( - , v ) / ,  

z e S,,. 

(17) 

Proof. To prove the theorem, it is sufficient to establish the validity of the constitutive equation of 
the boundary-value problem (17). In fact, substituting (16) into (15), we obtain 

OO N Tl 

,,*j(-,p) = ~ -(~j), , , .  H o(p,v,.) II  %j~(=,=,p~)dpe (18) 
n----I f~l ~=I ~---I 

Integrating in (18), we have 
OO N 

R (*)/x ,,~ * %(~,P) = ~ (o) ,  , , ' ,  H %j~(~=,P)" 
n = l  ~=1 

We shall determine the class of viscoelastic materials (relaxation kernels) for which relation (16) holds 
true, i.e., we shall determine the possibility of reducing the initial problem to the nonlinear elastic problem 
(17). 

T h e o r e m  3. In order to be able to reduce the boundary-value problem (1) to the boundary-value problem 
(17) by means of integral transforms with the kernels qot(p, t) and ~o+(p, t), it is necessary and sufficient that 
the relazation kernels be represented in the form 

P n 

R(ij)(x, t, rl,. ,Tn) J " "  = l"t(ij)(x'P)qOll(P, t) H 9~ (19) 
r~( f# ) / 

~p v= l  
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Necessity. Let the boundary-value problem (1) be reduced to problem (17) by integral transforms. Since 
the operations of differentiation with respect to the coordinates and integration over time are transposed in 
the given case, it suffices to prove this just for the constitutive equations 

oo R 

* ~(') ,x p) 1-[ * (x,p). (20) 
n = l  ~ = 1  

that  eT~&(x,p) = [ eqj~(x,~)~+(p,r~)dr~, we find from (20) that  Considering 

f~(*) rx ~*~(x,p) = l-o(ii), ,P) v+(p ,~)  %jr162 (21) 

Multiplying (21) by ~oll (P, t) and integrating over p, we obtain 

The expression in the square brackets is the kernel of the integral operator of the constitutive relations 
n 

= / n 
tip ~=1 

Sufficiency. As before, it turns out to be sufficient to prove that the constitutive relation of problem (I) 
converges to the constitutive relation of problem (17). In fact, substituting (19) into (1), we obtain 

= ,=_,fi ,--,fi 
Integrating over all r~ and considering that f eieje(z, rf)~+(p, rf)dr~ = ~i*~j~(z,p), we arrive at the 

equality 
OO lg 

~(*) rz "~ * z ~b(x,p) = E-o( , j ) ,  ,~, I I  ~,~i~( 'P)" 
n----I v----1 

There are other transforms [2-4] that reduce general relations of type (1) for piecewise-degenerate 
kernels to a problem of nonlinear elasticity. 

Let us illustrate the proposed method by solving a specific problem, namely, the problem of the stress- 
strain state of an infinite strip that is composed of an aging material and is compressed by two distributed 
forces. The thickness of the strip is 2b, and the forces on its surface are distributed in accordance with known 
laws: 

O~ij(z,t) 1 fOui(x,t) Ouj(x,t)~, 
Ozi =0,  e~j(z,t) = ~ ( Oz i + Ozi J 

~ ( ~ , t ) ]  t ~ ( ~ , t )  eij(z,t) = ( l + v ) [ ( I - L )  ~ j - v E i j ( ' -  )( ~ ) 

2 ~ , , ( ~ , t ) ~ ( ~ ,  + t6(I- L)[ ~r"#era0Sq + t)], (22/ 
[ E2 E2 

(rij(z, t)ni(z ) = Pi(x, t) -- { f]f2(y), (y)' z ~ ~ S], 
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Here v is the Poisson ratio, E1 is Young's modulus, E2 is the modulus of quadratically nonlinear elasticity, 
and/3 is a material constant. The operator (I - L) is expressed by the formula 

(I - L) ai-L = cril(x' t) i o'ij(x, 7") K'(t, t - ~') dr. (23) 
E1 El(t) -- E2(r) 

0 

The operator (I - L) has an inverse [5]. We write (23) in the form 
(3O 

(I - L) ~rij _~l = f {G(t,.r) aij(x,~" > ai j (x ,~ ')K'( t , t - 'c)}d 'r .  (24) 
o E , ( r )  E , ( r )  

Here G(t,r) is the kernel of a unitary integral transformation, and the kernel K'(t , t  - ~') is assumed to be 
equal to zero for moments ~" greater than t. We rewrite (24) in the form 

( I -  L) (rii 7criJ(z' ~') [G(t, r ) -  K ' ( t , t -  r)] dr. 
~ = J  ~ 

0 

We denote G( t, r) - 
Thus, in accordance 

transform by ~0+(1, ~'). As a 
problem (22): 

K'(t, 1 - ~') = ~o,(1, r). 
with (5), the inverse transform is known for the kernel ~ot(t, ~'). We denote this 
result, we have the following as the constitutive equation for the boundary-value 

oo [ - o'aptra#6ij 2trota~rij ] 
e~i(x,t) = f (1 +E, ")% "~J ~'m + # ~ + F~ J {a(t, r )  - K ' ( t ,  1 - r)} dr. 

0 

Using Eqs. (6) and (9)-(11), for problem (22) we obtain 

a~iC~,t) 11,a,~.(~,O a,,~(x,1) I 
0xj =0,  ~ j ( , , t ) = ~ t  0~j + ox~ J' 

1 + V r t) -- V6ij O'mm B O'a#~#6iJ 2~aa~ij ~b(::,t) = ~ ~ +_ ~ + - - , ~  (25) 

= e~(~, 1) = { I,(u), = ~ s,, ~rij(2:, t)ni(x) A(y), x~s2. 
The boundary-vMue problem (25) is a nonlinear elastic problem. It is of interest that only the strains, 

rather than the stresses, were transformed in this case. Thus, the stresses of the elastic problem (25) give the 
stresses of the viscoelastic problem. The constitutive relations are used to determine the strain tensor, which 
is then used to determine the displacement vector. 
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